If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-178=0
a = 1; b = -6; c = -178;
Δ = b2-4ac
Δ = -62-4·1·(-178)
Δ = 748
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{748}=\sqrt{4*187}=\sqrt{4}*\sqrt{187}=2\sqrt{187}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{187}}{2*1}=\frac{6-2\sqrt{187}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{187}}{2*1}=\frac{6+2\sqrt{187}}{2} $
| y^2-y-400=0 | | -x^2+40x-350=0 | | -x^2+40-350=0 | | 23=1/4x^2+4x | | 6x3-7x2-7x+6=0 | | x^2+10x-49^2=0 | | 4x2-2x+6=36 | | 114x=19 | | 3t+9t+20=152 | | 2x/7=5/14 | | 8^(2-x)=4^(3x) | | -4.3=21.3+x/2 | | -7m+2=54 | | 8.000=15.000-c | | 9x+-7=38 | | 4x+-8=-40 | | -52+5x=23+2x | | 10x-1=3x12 | | p+p+5=p+45 | | u+u-49=u+42 | | 6(2x)=49 | | w+w+7=w+40 | | y+y-50=y+41 | | a-5+a-25=a+49 | | x+104=139 | | x+50=107 | | 4.9x^2+30x+0.5=30 | | -2x^2+24-40=0 | | w+31+w+1+2w=180 | | v+29+82+2v=180 | | 30=-4.9x^2+30x+0.5 | | w+47+4w+2w=180 |